lllustration of the expected and
unexpected losses under Vasicek-Merton
model

Author: Juan Pablo Conejero Herrera

The purpose of this notebook is to illustrate the concepts of expected loss (EL) and
unexpected loss (UL) in the context of credit risk management. To this end, a Vasicek-
Merton model is introduced and a Monte Carlo simulation is carried out to empirically

derive the EL and UL of a credit portfolio.
Specifically, the following topics will be covered in this notebook:

* Modelisation of the probability of default (PD) considering both external (systemic)
and loan/obligor specific (idiosyncratic) factors.

* Equivalence of the EL to the mean of the loss distribution.

* Equivalence of the UL to the 99.9-th quantile of the loss distribution.

Introduction

There are two key measures of the credit risk of a financial instrumnent: the EL and the
UL. As it name suggests, the EL relates to the financial loss that could be expected on
average while the UL deals with the financial loss that would take place in an extreme

(hence unexpected) scenario.

There are several ways of modelling the EL and UL. In this notebook, we introduce one of
the most popular, the Vasicek-Merton model, which is used by the Basel Committee on
Banking Supervision to determine the amount of capital that banks are required to hold
against credit risk. Under this framework, the EL and UL are defined as

EL=PD-LGD-EAD

UL =@ (qu(PD) + P @—1(99.9%)) .EAD-LGD

where @ is the cumulative standard normal distribution, p is the common loan/obligor
correlation, PD is the probability of default, LG D the severity and EAD the exposure
at default. Notice that the expression for UL does not include a maturity adjustment. This
is a consequence of using a simplified model and does not hamper our goal of
illustrating the EL and UL by means of a simulation.

import Llibraries

import scipy.stats as sps
import matplotlib.pyplot as plt
import numpy as np

Vasicek-Merton model

The are several variants of the Vasicek-Merton model depending on the assumptions

made. In this notebook, we will assume the following:

* Homogeneous portfolio in terms of LG D (severity) and EAD (exposure).
* (Constant loan/obligor correlation, p.
* Common default threshold, 7" for all obligors.

We start by considering the following one-factor Gaussian copula:

Vn:\/ﬁy+‘\/1_p€n

where y ~ N(0,1) is the systemic factor that affects all loans/obligor equally and
€n ~ N(0,1) is the idiosyncratic factor particular to the loan/obligor n.

Under the Vasicek-Merton model, a loan/obligor defaults when V;, falls below a certain
threshold, T'. It is useful to see V,, as the value of a firm and 71" as the threshold below
which the value of the firm is smaller than the value of the loan (negative equity) and,
hence, it is preferable to default than to repay the loan. Moreover, the systemic factor y
can be thought of as economic conditions that affects all loans/obligors simultaneously,
while the idiosyncratic factor €, as all other circumstances that are unique to
loan/obligor n and that affect their ability to repay the loan.

The probability of default of loan/obligor n conditional to a realisation of y = yq is
PD(yy) = P[V, <Tly=yo] =P [Wyo + /1 —pe, <Tly= yo]

—fyo] (T—\/ﬁyo)
=yY| = ————lvy=w
RV Vs

where ®() is the cumulative standard normal distribution. The value of the threshold is a

=P

constant that can be set arbitrarily. In our case, we will derive an expression to find the
value of the threshold that makes the expected value of the probability of default equal
to an arbitrary value, PD,,,.qn-

00 T_
E[PD(y) / PD(y) - ply) dy = / @(ﬂ)-p(y) dy

1-p
:/— Q)<\/1T—p - \/fipy) o)y

This expression can be simplified by considering the identity

f_();@(a—l—bx) p(z) de =& (\/%)

T
B S S . I
E[PD(y)]—/f(m 1_py) p(y) dy = N — (1)

Thus,
T = % (E[PD(y)])

Once we have introduced the Vasicek-Merton model, we are ready to carry out a Monte
Carlo simulation to derive the empirical distribution of a portfolio of loans that satisfies
the assumptions that we have imposed.

Monte Carlo simulation

Let's first define the inputs.

inputs

risk parameters

pd_mean = 0.1 # average PD of the loans/obligors
lgd = 1 # assumed fixed without Loss of generality
ead = 1000

asset/obligor correlation
rho = 0.2

From the expression derived before, we derive the threshold.

threshold = sps.norm.ppf(pd_mean)

Now, it is time to draw our sample of loans/obligors. In terms of the Vasicek-Merton
model, this corresponds to generating the idiosyncratic factor specific to each
loan/obligor.

sample size (number of Loans/obligors)
n = 10**5

idiosyncratic factors (N(©,1) by assumption)
idiosync_factors = np.random.normal(@, 1, n)

Once we have generated our portfolio, we obtain the loss distribution under a variety
(random) of systemic conditions. To this end, we generate a total of ¢ systemic factors (or
macroeconomic conditions) and evaluate the number of defaults in each of these
scenarios according to the Vasicek-Merton model introduced earlier.

%%time

number of simulations (number of different economic scenarios that will be con
t = 10**5

portfolio Loss vector (store total Loss for each year)
loss = np.zeros(t)

pre-compute constants (enhances efficiency)
sqrt_rho = rho**0.5
sqrt_1_minus_rho = (1 - rho)**0.5

for i in range(t):

print simulation progress
if (i + 1) % (t/10) == 0:
print('Progress: {:2.0%}'.format((i + 1)/t))

systemic factor (economic conditions; N(6,1) by assumption)
systemic_factor = np.random.normal(@, 1)

one-factor model
v = sqrt_rho * systemic_factor + sqrt_1_minus_rho * idiosync_factors

count defaults
defaults = np.sum(v < threshold)

compute yearly loss (since identical Lloans / obligors)
loss[i] = defaults * ead * lgd

Progress: 10%
Progress: 20%
Progress: 30%
Progress: 40%
Progress: 50%
Progress: 60%
Progress: 70%
Progress: 80%
Progress: 90%
Progress: 100%
CPU times: total: 27.5 s
Wall time: 28.8 s

Let's graph the empirical loss distribution of the portfolio.

Convert to numpy array (already done in your code)
loss_np = np.array(loss)

Resize the graph
plt.figure(figsize=(12, 6), dpi=80)

Plot histogram of losses
plt.hist(loss_np, bins=500, density=True, alpha=0.6, color='b', label="Histogran

Add smooth Line using KDE

kde = sps.gaussian_kde(loss_np)

x_vals = np.linspace(loss_np.min(), loss_np.max(), 1000)
kde_vals = kde(x_vals)

plt.plot(x_vals, kde_vals, color='red', label="KDE Line")

Add title and lLegend
plt.title("Distribution of Portfolio Loss")
plt.legend()

plt.show()

le—8 Distribution of Portfolio Loss

BN Histogram
—— KDE Line

Results

Let's compare the EL with the average loss obtained in our simulation.

expected lLoss of the portfolio
EL = n * (ead * pd_mean * lgd)
print("Expected loss of portfolio: {}".format(EL))

average Loss per asset/obligor
average_loss = np.mean(loss)

print("Average loss of portfolio: {}".format(average_loss))

discrepancy

print("Relative difference: {}%".format(abs(EL-average loss)/EL*100))

Expected loss of portfolio: 10000000.0
Average loss of portfolio: 9940779.1
Relative difference: ©.5922090000000036%

Finally, less compare the UL to the 99.9th percentile of the loss distribution.

UL (as defined under Basel III without maturity adjustment)

le7

UL = sps.norm.cdf(sps.norm.ppf(pd_mean) + rho**0.5 * sps.norm.ppf(0.999)) * ead

print("Unexpected loss of portfolio: {}".format(UL))

99.9th percentile
empir_ul = np.percentile(loss_np, 99.9)

print("99.9th percentile loss of portfolio: is {}".format(empir_ul))

discrepancy

print("Relative difference: {}%".format(abs(UL-empir_ul)/UL*100))

Unexpected loss of portfolio: 54000341.94037084
99.9th percentile loss of portfolio: is 53841084.00000032
Relative difference: 0.2949202442947137%

Both the average and the 99.9th percentile of the loss distribution converge to the EL

and UL, respectively.

